- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Zlotnik, Anatoly (2)
-
Ahumada-Paras, Mareldi (1)
-
Bent, Russel (1)
-
Cardenas, Meinhard B. (1)
-
Cole, Kevin D. (1)
-
Conejo, Antonio J. (1)
-
Rudkevich, Aleksandr M. (1)
-
Sioshansi, Ramteen (1)
-
Sundar, Kaarthik (1)
-
Zhao, Bining (1)
-
Zlotnik, Anatoly V. (1)
-
Zlotnik, Vitaly A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ahumada-Paras, Mareldi; Sundar, Kaarthik; Bent, Russel; Zlotnik, Anatoly (, 21st Power Systems Computation Conference (PSCC))Although electricity transmission systems are typically very robust, the impacts that arise when they are disrupted motivate methods for analyzing outage risk. For example, N-k interdiction models were developed to characterize disruptions by identifying the sets of k power system components whose failure results in “worst case” outages. While such models have advanced considerably, they generally neglect how failures outside the power system can cause large-scale outages. Specifically, failures in natural gas pipeline networks that provide fuel for gas-fired generators can affect the function of the power grid. In this study, we extend N-k interdiction modeling to gas pipeline networks. We use recently developed convex relaxations for natural gas flow equations to yield tractable formulations for identifying sets of k components whose failure can cause curtailment of natural gas delivery. We then present a novel cutting-plane algorithm to solve these problems. Finally, we use test instances to analyze the performance of the approach in conjunction with simulations of outage effects on electrical power grids.more » « less
-
Zhao, Bining; Zlotnik, Anatoly; Conejo, Antonio J.; Sioshansi, Ramteen; Rudkevich, Aleksandr M. (, IEEE Transactions on Power Systems)Increasing use of natural gas for electricity production places added strains on pipeline systems that are used for transporting fuel. Pipeline constraints require power system operators to account for natural gas-supply restrictions in their operational processes. This paper proposes separate optimization models for clearing day-ahead wholesale markets for scheduling power and natural gas systems. We then develop a market-based mechanism that allows for efficient co-ordination of the two systems. Importantly, the co-ordination mechanism only requires the exchange of fuel-price, -supply, and -demand information between the two markets. This can be contrasted with other co-ordination mechanisms that require operations of the two systems by a single entity. Thus, we provide a computationally tractable co-ordination mechanism that does not require the exchange of proprietary information between natural gas and electricity system operators. We demonstrate the effectiveness and scalability of the technique using a numerical example.more » « less
An official website of the United States government

Full Text Available